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Although originally developed as a method for reducing sampling errors while
retaining randomization consistency, calibration weighting can also be used
to adjust for unit nonresponse and/or coverage errors under appropriate
quasi-randomization models.   Linear and nonlinear calibration adjustments,
which are asymptotically identical in a purely sampling context, can diverge
asymptotically when used in this manner.  In addition, defining instrumental
variables makes it possible for nonresponse (say) to be a function of a set
of characteristics other than the calibration vector and opens the possibility
of using calibration to handle nonignorable nonresponse.  A variant of the
jackknife can remove the need for iteration in variance estimation when the
calibration adjustment is nonlinear.
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I.   INTRODUCTION 

Calibration weighting was originally developed as a method for reducing

sampling errors while retaining randomization consistency.  Folsom and Singh (2000),

among others, have shown that calibration weighting can also be used to adjust for

coverage errors and/or unit nonresponse under appropriate quasi-randomization

models.  

Folsom and Singh is not in the refereed literature.  The heart of this paper

repeats their key results, adding to them the idea that the calibration variables need not

be exactly the same as the explanatory variables in the function for the element

response (or coverage) probabilities.    In addition, a jackknife is proposed that

computes replicate weights in one step even though the calibration weights themselves

may be determined iteratively.     

Section 2 provides a review of linear calibration in a purely sampling context. 

Section 3 describes Estevao and Sarndal’s (2000) expansion of linear calibration to

include “instrumental variables.”   Section 4 parallels Deville and Särndal (1992)

treatment of nonlinear calibration to include the expansion of the previous section.  

Section 5 reviews variance/mean squared error estimation, proposing a new jackknife

for certain designs.  Section 6 describes how nonlinear calibration can be used to

adjust for nonresponse and/or coverage errors, that is, frame under- or over-coverage.   

Section 7 contains a small empirical example supporting the new jackknife.  Section 8

provides a discussion.  
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2.   LINEAR CALIBRATION AND THE GREG ESTIMATOR 

Suppose we knew the selection probability, Bk, for each sample element k in the

sample S, then we could estimate any population total, Ty = 3U yk, where U denotes the

population, with the expansion estimator ty_E = 3S yk /Bk = 3U yk Ik /Bk, where Ik = 1 when 

k 0 S and 0 otherwise.  Treating the Ik as random variables, it is easy to see that ty_E is

an unbiased estimator for Ty.  Properties arising when the Ik are treated as random

variables are called randomization-based.   We can also write ty_E = 3U ak yk = 3S ak yk,

where ak =  Ik /Bk is the sampling weight of element k. 

Deville and Särndal (1992) coined the term “calibration estimator” to describe an

estimator of the form ty_CAL  = 3S wk yk, where 3S wk xk = 3U xk = Tx for some row vector of

auxiliary variables, xk = (x1k, ..., xPk), about which Tx is known.  Since there is generally a

continuum of sets  {wk * k0S} that satisfy the calibration equation: 

                                                         3  wk xk = Tx ,                                                         (1)

                                                                                            k0S
  
Deville and Särndal required that the difference between the set of weights, {wk * k0S},

satisfying equation (1) and {ak * k0S} minimize some loss function.  

An alternative approach to survey sampling treats the yk as random variables

satisfying the linear prediction model:

                                                          yk = xk$ + ,k,                                                        (2)

where E(,k *{xg, Ig * g0U}) = 0 for all k 0 U.    By conditioning this expectation on the Ig,

we are assuming the sampling mechanism can be ignored.   This is a crucial, and
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sometimes unreasonable, aspect of the (prediction) model-based framework. 

It is easy to see that ty_CAL is an unbiased estimator for Ty under the model in the

sense that E,(ty_CAL ! Ty) = 0  (suppressing the conditioning for notational convenience);

the subscript , refers to treating the ,k as random variables (and the Ik as fixed

constants).  

 For our purposes, the general(ized) regression or GREG estimator has the form: 

       
                       ty_GREG  = ty_E + ( Tx ! 3 akxk)( 3  ckakxk'xk)

 -1  3  ckakxk'yk,                         (3)
                                                      k0S       k0S                k0S                                   
                                            
where ck is an arbitrary constant which may or may not be a function of xk, and 

limN64 3U ckxk'xk /N = 7 is a positive definite matrix, where N is the size of U.   This last

condition means that  3S ckakxk'xk will usually be invertible in practice.  We will assume

that it is always invertible for convenience.  

   The GREG estimator in equation (3) can be rewritten in calibration form as 

ty_GREG = 3S wkyk, where

                                  wk =   ak + ( Tx !3 ajxj)( 3  cjajxj'xj)
 -1 ckakxk'.                                 (4)

                                                           j0S       j0S

Strictly speaking, the wk are functions of the realized sample, S, and the ckak, but we

suppress that in the notation for convenience.  Observe that the calibration weights in

equation (4) are linear functions of xk,  hence the term “linear calibration.”  The

calibration equation itself (equation (2)) will always be linear here. 

Let us assume that reasonable regularity conditions hold (see, for example,  

Kott 2004 for a more thorough treatment) and the sample plan is such that ty_E !Ty =



4

OP(N/¾n), where n is the (expected) size of S (the actual size can be random),  

3S akxk !Tx = OP(N/¾n), and  3S ckakxk'fk !3U ckxk'fk =  OP(N/¾n), where fk can be xk or yk. 

Let  ek = yk ! xk (3U cixi'xi)
-1 3U cixi'yi, so that 3U cixi'ei = 0, and  3S ckakxk'ek =  OP(N/¾n). 

We can express the error of ty_GREG as

ty_GREG  !  Ty =   3 wkyk ! 3  yk

                         k0S        k0U

         =   3 wkek ! 3  ek          (since   3 wkxk ! 3 xk) 
                         k0S        k0U                    k0S        k0U

          =   3 akek + ( Tx !3 akxk)( 3 ckakxk'xk)
-1  3 ckakxk'ek ! 3 ek 

                         k0S                 k0S       k0S               k0S                k0U
         
          =  3 akek ! 3 ek   +  Op(N/n).                                                                    (5)
                        k0S        k0U

The GREG estimator is randomization consistent with a relative randomization bias and

mean squared error of asymptotic order 1/n.

3.  REDEFINING CALIBRATION WEIGHTS

In their original definition of calibration weights, Deville and Särndal (1992)

required that the set of calibration weights, {wk * k0S} minimize some distance function

between the members of the set and the original sampling weights, the ak, subject to

satisfying the calibration equation.   As a result, the calibration estimator, ty_CAL = 3S wkyk,

was both unbiased under the model in equation (2) and usually randomization

consistent.   

Estevao and Särndal (2002) suggested removing the requirement that the
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calibration weights minimize a distance function.  Instead, they essentially proposed

that the wk need only satisfy the calibration equation and be of the “functional form:” 

                                                       wk = ak(1 + hkq),                                                     (6)

where hk is a row vector with the same dimension as xk such that 3S akhk'xk is invertible,

and q is a column vector of that same dimension.  It is a generalization of the GREG

where hk effectively replaces ckxk 

It is not hard to see that q = ( 3S ajhj'xj)
 -1 ( Tx !3S ajxj)'.    Moreover, under mild

conditions we assume to hold, ty_CAL = 3S wkyk =  3S akyk + ( Tx !3S ajxj)( 3S ajhj'xj)
 -1 

3S akhk'yk  is randomization consistent whenever  ty_E is.   It is unbiased under the linear

prediction model in equation (2) when  E(,k *{xg, hg * g0S}, {Ig * g0U}) = 0 for all k 0 U.

 This suggests another alternative definition of calibration weights: a set of

weights, {wk *k0S}, such that, i, the  wk satisfy the calibration equation for {xk * k0U} and,

ii,  ty_CAL = 3S wkyk is randomization consistent whenever ty_E is under mild conditions.  

That is the definition we will use.  

It follows that Estevao and Särdnal’s functional-form calibration is indeed a form

a calibration weighting.   Borrowing from econometric theory, the components of hk that

are not linear combinations of components of xk are called “instrumental variables.”  
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4.  NONLINEAR CALIBRATION

Building on ideas in Deville and Särndal (1992), we can generalize the linear

form for the calibration weights in equation (6) to 

                                                  wk_GEN = ak f(hkq*),                                                       (7)

where f is a monotonic, twice-differentiable function with f(0) = 1,  f'(0) = 1 (f'(0) is the

first derivative of f evaluated at 0), and q* is chosen so that the calibration equation

holds.    

Strictly speaking, there should be an additional symbol on wk_GEN (and later on

wk_LIN) to denote the particular choice of hk.  It has been dropped for convenience.

A solution, q*, to equation (7) can be approached iteratively.  One can start with

q(0) = 0; that is,  3S wk
(0)yk, where wk

(0) = akf(0).  For r = 1, 2, ..., one then sets 

q(r) =  q(r-1) + [ 3S f'(hkq
(r-1)) akhk'xk]

-1 (Tx !3S wk
(r-1)

 xk)' , and  wk
(r) = ak f(hkq

(r)).  Iteration

stops at r* when Tx = 3S wk
(r*)

 xk for all practical purposes.    One should be aware,

however, that there may not be a set of weights that can be expressed in the form of

equation (7) while satisfying the calibration equation.    

Note that q(1) above equals the q  in wk_LIN =  ak(1 + hkq).  A Taylor expansion

around zero reveals f(hkq
(1)) = hkq

(1) + Op(1/n) under mild conditions, so 3S wk
(1)yk = 

3S wk_LIN yk + OP(N/n) = Ty[1 + OP(1/n)].   Furthermore, it is not difficult to see that 

wk_GEN = wk_LIN[1 + OP(1/n)], an equality that proves helpful in variance estimation.

The most common example in practice of a nonlinear f is f(hkq) = exp(xkq),
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where the values of each of the components of xk, denoted x1k, ..., xPk, are either 0 or 1. 

That is effectively the form of Deming and Stephan’s (1940) raking weights computed

via iterative proportional fitting.  Many have observed that the iterative routine described

above can be used even when the components of xk are not binary as they are in

Deming and Stephan.   Note that the generalized raking calibration weights that result

are always nonnegative. 

5.  VARIANCE ESTIMATION

Särndal, Swensson, and Wretman (1989) proposed this plug-in variance/mean-

squared-error estimator for ty_GREG under an arbitrary sampling plan:

                                 vSSW =    3    3   [(Bkj !BkBj)/Bkj](wkrk)(wjrj).                                      (8)
                                             k0S  j0S   

The term derives from rk being “plugged into” vSSW in place of the unknown ek (for

randomization-mean-squared-error estimation) or ,k (for prediction-model-variance

estimation).    Following the reasoning of Deville and Särndal (1992), vSSW also applies

to ty_CAL with calibration weights defined by equation (7), and rk = yk ! xk(3S hj'xj)
-1 3S hj'yj.

Developing asymptotic properties for vSSW can be elusive when it contains

n(n!1)/2 distinct terms.  That is not a problem under stratified simple random sampling,

where   

                                    A
                        vST1  =  3   (n" /[n" !1])  3 (1 ! n" /N") (wk rk !3 wj rj /n")2,                  (9) 
                                  "=1                   k0S"                            j0S" 
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S" denotes the sample of n" units in stratum " (" = 1, ..., A), and U" the stratum

population containing N" elements.   

 For a multi-stage sample it makes sense to allow the possibility that ,k and ,j in

the prediction model are correlated when k and j are elements in the same PSU, but not

otherwise.  When finite-population correction can be ignored, the model variance of a

calibration estimator is approximately Vm = 3i0S' E, [ ( 3k0S(i) wk,k)
2] under mild conditions,

where S(i) is the set of sampled elements in PSU i, and S' is the set of PSUs selected

in the first stage of sampling.   

The following variance estimator often has good randomization and model-based

properties (when the first-stage selection probabilities are all small):

                         A
            vST2   =  3    (n1" /[n1" !1]){  3    (  3   wk rk )

2 ! ( 3       3    wk rk)
2 /n" },     (10)

                       "=1                       j0S1" k0S"j              j0S1" k0S"j 

where " denotes a first-stage stratum of PSU’s, n1" the number of sampled PSU’s in

stratum ", S1" the set of sampled PSU’s in ", and S"j the set of subsampled elements

from PSU j of stratum ".  There can be many stages of sampling involved.

It is not hard to show that vST2 is asymptotically indistinguishable from the

jackknife variance estimator: 

                                        A
                              vJ   =  3   ([n" !1]/n" ){  3   (ty_CAL("j) ! ty_CAL)

2 },      (11)
                                      "=1                      j0S1" 
 
where ty_CAL("j) = 3k0S wk("j)yk, and the jackknife replicate calibration weights are 

wk("j) =  wk ak("j) /ak + ( 3m0U xm !3m0S wm[am("j) /am ]xm)( 3m0S am("j)cmxm'xm) -1 ak("j)ckxk', where

ak("j) = 0 when k is in PSU j of stratum ", ak("j) = ak when k is not in stratum " at all, and
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ak("j) = (n" /[n" !1])ak otherwise.  The wk("j) are constrained so that 3k0S wk("j)xk = 3k0U xk

for all "j.  Now, under mild conditions we assume to hold, 

3m0U xm !3m0S wm[am("j) /am ]xm = (n" /[n" !1])( 3k0S("j) wkxk ! 3k0S(") wkxk /n") = OP(N/n), 

( 3m0S cmam("j) xm'xm) =  OP(N), and  

3m0S cmam("j) xm'em = OP(N/¾n), 

where S(") is the set of elements in stratum ", and S("j) is the set of elements in PSU j

of stratum ".  As a result, 

ty_CAL("j) ! ty_CAL =  3k0S wk("j)ek  ! 3k0S wkek = 

                                                     (n" /[n" !1])( 3k0S(") wkek /n" ! 3k0S("j) wkek ) +  OP(N/n3/2), 

and vJ  = vST2 [1 + OP(1/¾n)] when plimn64(nvST2 /N
2) > 0. 

The replicate weights described above are nonstandard.   More common is 

wk("j) =  ak("j) + ( 3m0U xm !3m0S am("j)xm)( 3m0S cmam("j) xm'xm) -1 ckak("j) xk', which “look like” the

original calibration weights.  Our version generates a vJ with a model expectation closer

to 3i0S' E, [ ( 3k0S(i) wk,k)
2].    Replacing ek in the arguments above by ,k, it is not hard to

show that E,(vJ)  = Vm [1 + OP(1/n)] under mild conditions. 
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6.  UNIT NONRESPONSE AND COVERAGE ADJUSTMENT

In this section we explore handling unit (whole-element) nonresponse as an

additional phase of Poisson sampling.  That is the essence of a quasi-randomization

model.    Each element k in the original sample, now denoted F, is assumed to have a

probability of response, pk.  The probability of elements k and j jointly responding is pkpj,

and whether element k responds (given a vector of covariates)  is independent of

whether it is chosen for the original sample.   

It is often possible to construct a set of weights so that the calibration estimator

is randomization consistent under the quasi-randomization model.  We are interested

here in a particular way of constructing those weights.  To this end, we assume that the

quasi-randomization model is correct.   Each element has attached to it a row vector of

auxiliary variables, xk, for which Tx = 3U xj is known. Finally, each pk is assumed to have

the form: 

                                                         pk = 1/ f(hk N),                                                     (12)

where N is an unknown column vector, hk is a row vector with the same dimension as

xk, and 3S akhk'xk /N, where S now denotes the “subsample” of respondents,  is

invertible both for the realized N and in the probability limit.  The function f is assumed

to be monotonic and twice differentiable.  Its functional form is known, but the value of

the governing parameter, N, is not.   Neither f(0) nor f'(0) need be 1. 

The most obvious choice for hk when postulating the response model in equation
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(12)  is xk itself.  In some applications, however, some component(s) of xk may have

been chosen because it was the best measures we had for a variable before sampling. 

An example of such a variable in a survey of farms is the total land area of an

operation.  After collecting survey values, it may be possible to replace a component of

xk (in hk) with a better measure of the variable in question.   In our example, response is

more likely a function of the actual land area of a farm than a predetermined proxy for

that value.  As a result, replacing the corresponding proxy value with the survey value is

tempting.   A theoretical problem with this procedure is discussed below. 

Using the iterative method described in the last section to find q*, we will often

be able to uncover a row vector, q, such that Tx =  3S ak f(hk q)xk.  As a result,

estimating Ty with ty_CAL = 3S wkyk, where the adjusted calibration weights have the form,

wk = akf(hk q), may have good properties under the linear prediction model: yk = xk$ + ,k, 

where E(,k *{xg, hg, Ig * g0U}) = 0 for all k 0 U,  Ik = 1 if element k is both in the original

sample and responds, 0 otherwise.  

Prediction-model unbiasedness is simply a result of the weights satisfying the

calibration equation ( the prefix “prediction” is needed to distinguish this model from the

quasi-random one).  Note, however, that if some components of hk come from the

survey rather than xk, the prediction-model assumption that E(,k *hk ) = 0 can be

problematic.  At the extreme, consider the case where one such component is yk itself. 

Obviously, E(,k *yk ) is not usually 0.    In the example described above, yk may be the

total land area on farm operation k.   Putting total land area in hk makes the associated

calibration estimator prediction-model biased. 
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Whether or not ty_CAL can reasonably be called prediction-model unbiased has no

effect on its quasi-randomization-based properties.   Since Tx =  3S ak[1 + f(hk q)]xi, our

assumptions and the mean value theorem reveal

                              Tx ! 3 ak f(hk N)xk =   3  ak [f'(hk q
o)hk (q ! N)]xk =  OP(N/¾n) 

                                    k0S                    k0S

for some hk q
o between hk q and hk N.    From this we see that if 3S ajf'(hj N)jhj'xj /N is

invertible both for the realized N and at the probability limit (recall that f is monotonic so

f' is never zero), then

                     q ! N =  { 3  ajf'(hj q
0)jhj'xj }

-1{Tx ! 3 ai f(hi N)xi }  =  OP(1/¾n)
                                                  k0S                               i0S

                              =  { 3 ajf'(hj N)jhj'xj }
-1{Tx ! 3 ai f(hi N)]xi }    +  OP(1/n).

The estimator ty_CAL  has an error of 

                                       ty_CAL ! Ty =  3 akf(hkq)yk  ! 3  yk

                                                         k0S                 k0U 

                                                       =  3 ak f(hkq)ek ! 3 ek ,  

where ek = yk ! xk (3U f'(hjN)pj hj'xj)
-13U f'(hj N)pj hj'yj , and pj = 1/[1 + f(hj N)]   so     

3S ak f'(hk N) hk'ek  = Op(N/¾n).  Continuing:

                     ty_CAL ! Ty =  3  ak f(hk N)ek ! 3  ek  +  3  ak { f(hk q) ! f(hk N) }ek  
                                       k0S                   k0U       k0S
                                     =  3  ak f(hk N)]ek ! 3  ek  +  3 ak f'(hk N) hk (q ! N)ek + Op(N/n)   

                                     =  3  ak f(hk N)ek ! 3  ek  +   (q ! N)' 3 ak f'(hk N) hk'ek + Op(N/n)  

                                     =  3  ak f(hk N)ek ! 3 ek  +  Op(N/n)                                          (13)
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Thus, ty_CAL is quasi-randomization consistent under mild conditions whenever 

t = 3S akf(hk N)yk is.

To estimate the quasi-randomization mean squared error of ty_CAL (i.e., the

estimator’s randomization mean squared error under the quasi-randomization model),

we first note that the probability that elements k and j, k � j, are both in the respondent

subsample is Bkj* = Bkjpkpj.  Let Bk* = Bkpk, and recall that ak = 1/Bk and 1/pk = f(hk N). 

From equation (13), we see that  the randomization mean squared error of ty_CAL is

approximately

             EI[(ty_CAL ! Ty)
2]  .   3    3   (Bkj* ! Bk*Bj*)(ek /Bk*)(ej /Bj*) 

                                         k0U  j0U

                                      =   3  (1 ! Bk*)ek
2/Bk*   +   3    3  (Bkj ! BkBj)(ek /Bk)(ej /Bj)         (14) 

                                         k0U                               k0U j0U
                                                                                k � j

If the original sample is Poisson, then vm = 3S (wk
2 ! wk)rk

2  with   

                                  rk =  yk ! xk [ 3  aj f'(hj q) hj'xj]
-1 3 aj f'(hj q)hj'yj,                             (15)

                                                      j0S                      j0S 

serves as both a reasonable estimator for prediction-model variance and quasi-

randomization mean squared error under mild conditions, since wk . 1/Bk* and 

rk . ek.   A close relative of the non-intuitive sample residual in equation (15) can be

found in Folsom and Singh (2000).    See Kott (2004) for a further discussion of vm in a

purely sampling context. 

For a general design, we can get close to the a good variance/mean-squared-

error estimator by starting with vSSW in equation (8), where rk is again defined by
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equation (15).  We need to add a term like

                                                    vadd =  3 (wk
2Bk ! wk)rk

2,
                                                             k0S

so that 3U (1 ! Bk*)ek
2/Bk* in equation (14) is estimated by 3S (wk

2 ! wk)rk
2 rather than 

3S wk
2(1 ! Bk)rk

2.   This correction to vSSW in equation (8) has good prediction-model-

based properties when the ,k are uncorrelated, and Fk
2 = xk., for some ..  It can be

made even in the absence of nonresponse.   

When the actual sample is multistage, and the first stage selection probabilities

are ignorably small, vST2 in equation (10) can be used as the variance/mean-squared-

error estimator with rk defined once more by equation (15).  

Observe that when there is no nonresponse, N = 0, so that f'(hj q) = f'(0) + 

f''(0)hj q + OP(1/n) =  f'(0) + OP(1/¾n).  As a result, the f'-terms in equation (15) are all

asymptotically identical and can be removed from the definition of rk without altering the

asymptotics of the variance/mean-squared-error estimators.   

When f is linear, f'(2) = 1, and the rk in equation (15) are computed as if there

were no nonresponse.  The same holds true for the he variance/mean-squared-error

estimator vST2.  Unfortunately, this f corresponds to an awkward response-probability

function:  pk = 1/(1 + hkN).  Fuller, Loughin, and Baker (1994) made these observations

for the case where hk = ckxk.  

The jackknife, vJ, in equation (11) can be computed with these jackknife replicate 

weights:
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 wk("j) =  wk ak("j) /ak + ( 3  xm ! 3  wm[am("j) /am ]xm)( 3 am("j)f'(hm q) hm'xm) -1 ak("j)f'(hk q) hk'.  
                                m0U     m0S                       m0S                                                  (16)

Again when f'(2) = 1, vJ can be computed as if there were no nonresponse.

Folsom and Singh (2000) pointed out that the treatment of nonresponse through

calibration weighting can also be used to adjust for undercoverage.  In the context,  the

quasi-random phase as sampling occurs conceptually before the actual sample is

drawn.  The population associated with the sampling frame is assumed to be a Poisson

sample from a hypothetical complete population  for which the vector Tx must be

known.  The frame population becomes F, while the hypothetical complete population is

U.  The probability that element k 0 U is in F is assumed to be modeled correctly by

equation (12).   If the first (from U to F) and second (from F to S) phases of sampling

are independent, then all the theory developed for using calibration weighting to handle

nonresponse carries over to handling undercoverage.

The authors also noted that overcoverage (duplication) or a combination of

under and overcoverage can be handled in the same way.  The definition of pk in

equation (12)  becomes the expected number of times k is in the frame, which can now

exceed 1 due to potential duplication.     

Folsom and Singh further suggested that f(.) have the flexible form:

                                                U(C ! L)exp(xkN) + L(U ! C)
     f(xkN)  =  

 ————————————— ,                                     (17) 
                  (U ! C) + (C ! L)exp(xkN)

where L $ 0, 1 < U # 4,  and L < C # U  are predetermined constants.   They call this the

“General Exponential Model” or “GEM.”  Observe that when C = 1, U = 4, and L = 0, 
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pk = exp(!xkN).   Similarly, when C = 2, U = 4, and L = 1, pk = [1 + exp(xkN)]-1; that is to

say, the probability of response (coverage) is logistic.  The values L and U serve as

bounds on the calibration adjustment, f(.), while C = f(0) is effectively its center. The

authors made the calibration adjustment in GEM even more flexible by postulating three

classes of sampling units, each with its own set of U, C, and L values.  

We have seen in this section that calibration weighting can produce estimators

with good prediction-model-based properties when the prediction model is correct ! in

particular, equation (2) holds with E(,k *{xg, hg, Ig * g0U}) = 0, where Ig = 1 when g 0S

and 0 otherwise, and good quasi-randomization properties when the response or

coverage model (in equation (12)) is correct.  In some sense, one model provides

protection against the failure of the other.  See Kott (1994).  

As noted, the prediction model is more likely to hold when hg = xg.  Even then,

sometimes the ,k in the model in equation (2) satisfy  E(,k *{xg * g0U}) = 0, but not 

E(,k *{xg, Ig * g0U}) = 0; that is to say,  the sampling mechanism ! including response or

coverage !  is not ignorable with respect to the prediction model.  

We can factor Ik into Ik1Ik2, where Ik1 = 1 when and only when k is in the original

sample, and Ik2 = 1 when and only when k responds (including when k is not in the

sample, but would have responded if it were) or is covered by the frame.   The

interested reader can confirm that calibration weighting provides some protection again

bias if the prediction model in equation holds when  E(,k *{xg, hg,  Ig2 * g0U}) = 0; that is

when the response (or coverage) mechanism is ignorable with respect to the prediction

model but not necessarily the original sampling mechanism.
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7.  A SMALL EMPIRICAL EXAMPLE

Since the jackknife replicate weights expressed in equation (16) are new, it is

prudent to investigate whether they actually work with real data.  To this end, the author

took the MU281 data from Särndal, Swensson, and Wretman (1992) and replicated it

20 times (so N = 5,620).  Using stratified simple random sampling, 16 units were

selected from each of the eight unequally-sized strata.  The variable RMT85 served as

yk and P75 as xk in xk = (1, xk).   Each of the 128 sampled units was given a probability

of being in the respondent subsample, S, which decreased with the size of xk; in

particular, pk = exp(!.35 xk /Mx), where Mx was the population mean of the xk.  In 1,600

simulations, the size of the S ranged from 78 to 110, with an average of approximately

93.8.

 The total Ty was estimated two ways, with  ty_LIN = 3S ak(1 + xkq)yk and with 

ty_EXP = 3S ak exp(xkq
(exp))yk, where q and q(exp) were respectively selected so that the

calibration equation held.   The former was a GREG estimator, while the latter was a

generalized raking estimator.   Both estimators were unbiased under the implied

prediction model (yk = xk$ + ,k), but only ty_EXP, was randomization consistent under the

correct response model.   The GREG implicitly assumed pk = 1/(N0
(LIN) + N1

(LIN)xk) for

unknown N0
(LIN) and N1

(LIN). 

The small size of the sample relative to the population in each stratum allowed

the ignoring of finite population correction in variance/mean-squared-error estimation

(called “variance estimation” from now on).   Variances were estimated using, i,  the
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linearization estimator, vST2, in equation (10) with rk defined by equation (15),  and, ii, 

the proposed jackknife, vJ, in equation (11) with replicate weights defined by equation

(16).   To make the jackknife computations easier, the 16 samples in each stratum were

randomly assigned to one of four clusters, so that only 32 jackknife replicates had to be

computed. 

For comparison purposes, a better version of the linearization variance

estimator, labeled vST2(e), was also computed with rk replaced by  

ek = yk ! xk (3U f'(xjN)pj xj'xj)
-13U f'(xj N)pj xj'yj, where N and pj were known.  In practice, ek

is rarely known, but computing vST2(e) was useful for comparison purposes. 

One should note that computations of  rk and ek were slightly different depending

on whether the variance estimator for ty_LIN or for ty_EXP was of interest.  For ty_LIN, 

f'(xjN) =  f'(xjq) = 1; for  ty_EXP, f'(xjq
(exp)) = exp(xjq

(exp)), and  f'(xjN) = 1/pj.

Table 1 displays the empirical means (the mean over the 1,600 simulations) of

the two estimators for Ty normalized so that Ty = 100.   Although both are close to

unbiased, ty_LIN is significantly different from 100 at the .05 level; ty_EXP is not.  This is not

surprising, since only the latter is based on the correct response model.  

The variance estimators and empirical mean squared errors of each estimator

were normalized so that the empirical means of the respective vST2(e)’s were 100.  

Neither vST2(e) had an empirical mean significantly different from the empirical mean

squared error (EMSE) of the associated estimator.  This was a bit disappointing.  It

seems that although ty_LIN had a significant empirical bias, this bias was such a small

component of the estimator’s mean squared error, that the difference between its
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EMSE and the empirical mean of tST2(e) was not significant.  

The vST2(e) were chosen as benchmarks for the table rather than the empirical

mean squared errors because the former had roughly half the empirical standard errors

of the EMSE’s and correlated more strongly with the variance estimators.   The t-values

for this part of the table were also computed with respect to the vST2(e).

The two linearization variance estimators had surprisingly large downward

biases.  Apparently, there was a tendency for unusually large wk_LIN and wk_EXP to cause

associated rk to be appreciably smaller than ek in absolute terms.    The problems

associated with unusually large wk_LIN and wk_EXP seem to be more muted with the

jackknives. 

To speed up the asymptotics of the linearization variance estimators  (i.e.,

reduce the difference between rk and ek), an ad-hoc adjustment of vST2 was computed

by replacing each rk with rk(adjusted) = rk /Tk, where Tk
2 = 1 ! xk(3S ajf'(xjq)xj'xj)

-1 akf'(xkq)xk' =

1 + OP(1/n).  Observe that under the prediction model with the ,k uncorrelated and

E(,k
2) = Fk

2, E(rk(adjusted)
2) . Fk

2.  The near equality is exact when all the ajf'(xjq) and Fj,

respectively, are equal.   

The adjusted vST2 for both ty_LIN and ty_EXP remained biased downward, while the vJ

were biased upward by a slightly smaller amount.  Although these biases were

significant, they were reasonably small (from 4.5 to 11.2%) and suggest that the

variance estimators may have indeed been asymptotically unbiased as theoretically

demonstrated in previous sections.

Using vST2(e) as an efficient proxy for EMSE, the empirical mean squared error of



20

ty_EXP, which incorporated the correct response model, was more than 13% larger than

that of the ty_LIN, which did not.   One should not generalize broadly based on one data

set involving only two calibration variables, however. 

Whether or not one is better off incorporating the correct response model in the

calibration estimator, if one does so, then the variance estimators discussed in the

previous section, perhaps with the linearization estimator adjusted as suggested in this

section, appear to be serviceable.   

A second set 1,600 simulations (not displayed) were done using the same

population and stratified sampling design but with each sampled element given a 70%

chance of being in the respondent sample (the average respondent sample size was

roughly 89.8).  In this set of simulations, both estimators for Ty are randomization

consistent under the  response model.   Consequently, it is not surprising, that the

empirical means of  ty_LIN and ty_EXP were virtually identical (within 0.01% of each other)

as were their empirical mean squared errors (within 1% of each other).   The empirical

means of each pair of variance estimators (e.g. varST2 for ty_LIN and ty_EXP) were likewise

very close (within 1% of each other).   The relative bias of the adjusted vST2 (compared

to varST2(e)) was !1.3% when estimating the variance of ty_LIN and !2.2% when estimating

the variance of ty_EXP.  The relative biases of the unadjusted linearization variances were

!9.0% and !10.3%, respectively.  The relative bias of both jackknives was 3.6%.

Suppose there had been a true second phase of sampling rather than

nonresponse.   In this phase, each element had a .7 chance of being subsampled.  It is

not hard to see that were each ak replaced by ak /.7, the inverse overall selection

probability of element k, neither estimator for Ty  would change, nor would any of the
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variance estimators for ty_LIN.   The putative variance estimator vST2(e) for ty_EXP would

likewise be unaffected.  Thus, the empirical results from the second set of simulations

support the contention from Section 6 made for calibration in the absence of

nonresponse (or coverage errors):  the variance estimators developed for ty_LIN can be

used to estimate of variance of ty_GEN when both employ the same set of hk (here 

hk = xk).

8.  DISCUSSION

8.1   Estimating a Response Model Explicitly

When faced with unit nonresponse, many have attempted to estimate the

element probabilities of response, pk = 1/f(hk N), directly.  This method requires one to

have information on hk for every element in the sample whether it responded to the

survey or not, but hk need not have the same dimension as xk.   The direct-adjustment

method is generally not available for handling coverage errors. 

Fuller (2002) noted that there can be an extra term in the quasi-randomization

mean squared error of t y_GREG = 3S ak*yk + ( Tx !3S aj*xj)( 3S cjaj*xj'xj)
 -13S ckak*xk'yk,

where S is the respondent subsample, ak* = ak[1 + f(hkq)], and q is a consistent direct

estimator for the quasi-randomization model parameter, N. 
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8.2 Response Homogeneity Groups

To control the magnitude of the weight adjustment due to nonresponse,  Little

(1986) recommended that one estimate q explicitly and then divide the sample into C

mutually exclusive groups (often called “cells” or “poststrata”) based on the sizes of the

fitted f(hkq) values.   One then computes the adjusted weight for each element k in

group c as wk_ADJ =  (3F(c) wg /3S(c) wg)wk, where F(c) is that part of the original sample in

group c, S(c) is the subsample of F(c) that respond, and wk is the sampling weight

assigned to element k after sampling but before quasi-random subsampling.   This

approach assumes that each element in a group has (roughly) the same probability of

response, hence the term “response homogeneity group.”

An alternative way of incorporating fitted f(hkq) values into the estimation based

on methodology developed in the text follows.  Divide the fitted values into P groups

based in their sizes, where P is again the dimension of xk, and let dk be a row vector of

indicator variables for the P cells.  By setting each wk = ak[1 + (Tx !3S ajxj)(3S ajdj'xj)
 -1 dk'],

one computes a set of weights for the respondent subsample  that, unlike {wk_ADJ}

above, satisfies the calibration equation for the respondent sample.  Because of the

nature of dk, this linear method returns the same set of calibration weights as fitting 

wk = ak exp(dkf) would – if both produce a set of weights.  Note that since calibration

weights can be negative with the linear method, it may be able to find a set that the

generalized raking method cannot.   The linear method effectively scales the ak-value

for every element in the same group by a fixed amount.  Thus, it is unlikely to produce

surprisingly small or surprisingly large weights when the dimension of xk is small
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compared to the sample size. 

8.3 Breaking Up Sample and Nonresponse Calibration

In the previous section we noted that it is possible for components of hk in  

equation (12), the quasi-random response model, to be unknown before enumeration. 

When such an hk is used in calibration, it might no longer to reasonable to assert that

the resulting ty_CAL is prediction-model unbiased.   This is particularly troublesome when

nonresponse is modest compared to the sample size.  An intriguing idea is to calibrate

in two phases.  The first phase, sample calibration, adjusts for the difference between

Tx and 3F akxk, and would not include any components in hk unavailable at the time of

sampling.  The second phase, nonresponse calibration, adjusts for the difference

between  3F akxk and 3S akxk and would include component variables only available

after the respondent subsample is enumerated.  

A more thorough analysis of this idea must wait for another time.

8.4 Work at NASS 

The National Agricultural Statistics Service (NASS) used variants of the Fuller,

Loughin, and Baker (1994) approach for handling undercoverage in the Census of

Agriculture and for adjusting an agricultural economics survey with large nonresponse

to match totals from more reliable surveys.   In this approach, f(.) has the form:   
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                     L        when  1 + xkN  <  L        

f(xkN)   =    1 + xkN   when  L # 1 + xkN  #  U                                                               (18) 

                     U  when  1 + xkN  >  U, 

which truncates linear calibration at pre-specified values, L and U, to control the size of

the weight adjustment.   Note that when f(.) = U or L, f'(.) = 0.   Unlike the calibration

adjustment in equation (17),  f(.) in equation (18) is not twice differentiable at L !1 or 

U !1.  This does not cause a problem in practice.   

The agency’s original justification for calibration in these contexts was based on

prediction-modeling.   Equation (18) is simple to implement and appears to produce

weights within an acceptable range more often than readily available alternatives. 

NASS is investigating the following questions:   How sensitive is ty_CAL to the

choice of f(.) in practice?    Would a different choice for f(.) result in less bias, and if so,

would the reduction in absolute bias translate into a lower mean squared error? 

What would be the effect of replacing some component of the vector of calibration

variables with a better predictor of nonresponse/undercoverage?  
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Table 1
Empirical Means of Estimators Based on 1,600 Simulations*

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

                      Empirical mean (standard error)             t-value (two-sided significance)
 ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))   
                                            
The Estimators for Ty  (Ty = 100)                                          

ty_LIN                    99.84 (0.06)                          !2.79 (.02)        difference from
ty_EXP                               100.04 (0.06)              0.58 (.56)                 Ty

Variance Estimators for ty_LIN (EEMP(vST2(e)) = 100)               

vST2                    83.59 (1.53) !19.96 (<.0001)   difference from
vST2(adusted)                          95.53 (1.80)   !6.09 (<.0001)        vST2(e)

vJ                       104.69 (2.28)     3.60 (.0003)

EMSE                    99.35    !   !0.18 (.85)

Variance Estimators for ty_EXP (EEMP(vST2(e)) = 100)               

vST2         73.12 (1.54)            !18.22 (<.0001)   difference from 
vST2(adusted)         88.79 (1.98)              !8.57 (<.0001)          vST2(e)

vJ        107.00 (2.73)                4.09 (<.0001)

EMSE             101.21 !      0.33 (.74)

Other Statistics

relvar (vST2(e)[LIN])          .051      !                                         !
relvar(vST2(e)[EXP])          .059      !                                         !

vST2(e)[LIN] ! vST2(e)[EXP]
))))))))))))))))     !.1340 (.010)                             !13.87 (<.0001)
   EEMP(vST2(e)[EXP] ))  

* In four additional simulations, convergence was not reached in 10 iterations for ty_EXP. 
They were excluded from the analysis. 


